Environmental Solutions, Water Quality Standards and Assessment Section Approaches in Monitoring and Assessment for Statewide Adoption of the Biotic Ligand Model to Derive Aquatic Life Criteria for Copper in Oregon NWQMC 10th Annual Monitoring Conference May 6, 2016 # Background: Oregon's Adoption of the Biotic Ligand Model #### Endangered Species Act Consultation (Salmonids) 8-year process on Cu & other toxic pollutants ## Aug. 2012: National Marine Fisheries Service Jeopardy Decision Indicated that Oregon's copper criteria would cause harm to T&E species #### Jan. 2013: EPA Dissaproval of Oregon's WQ Standard: - Hardness-dependent copper criterion is potentially under-protective depending on site-specific water chemistry - Remedy: Adopt the Biotic Ligand Model #### **Expected adoption Jan. 2017** ## **Biotic Ligand Model Overview** #### Water Chemistry - **C**omplexation of Cu - Concentration of free Cu - **C**ompetition of Cu with ions Bioavailability **Organism Toxicity** ### **Biotic Ligand Model Overview** # EPA 2007 Revision - Aquatic Life Ambient Freshwater Quality Criteria – Copper #### 10 Required Input Parameters: •DOC •pH **Most Sensitive** - Temperature - Calcium - •Magnesium - Sodium - Potassium - Sulfate - Chloride - Alkalinity # Results in #### <u>Instantaneous Water Quality Criterion (IWQC)</u> - Applicable to a given set of input parameters - Acute Criterion (CMC) - 4hr average exposure - Chronic Criterion (CCC) - ■7 day average exposure #### 3 Optional / Alternative: - Dissolved Inorganic Carbon - Humic Acid - Sulfide #### **Biotic Ligand Model Overview** #### Model results (IWQC) are: - Water-chemistry dependent. - Don't know what the criterion is until you calculate it. - Variable in time and space. - Specific to conditions at time and location of sampling - What comprises a toxic copper concentration varies with water chemistry #### **Implementation Challenges:** - How do you get adequate parameter data to calculate the criteria? - expanded monitoring - estimates/surrogates for parameters - How do you implement a variable criteria? - Integrated Report assessment - NPDES permits #### **DEQ Biotic Ligand Model Parameter Monitoring** #### Monitoring objectives: - Augment sites where parameter data not already available: - NWIS / STORET - DEQ databases - Support evaluation of biotic ligand model - Near NPDES discharger sites - Sites with existing Cu samples - Further ambient monitoring may be required as a condition of new NPDES permits #### **DEQ Biotic Ligand Model Parameter Monitoring** #### Expanded parameter monitoring: - Initiated 2014-present - No dedicated funds for biotic ligand model parameter monitoring - Utilized existing DEQ monitoring sites - ambient and toxics network - typically representative of conditions lower in the watershed - Sampling at 138 sites across OR - 4 month intervals - collected both total and dissolved BLM parameters #### **DEQ Biotic Ligand Model Parameter Monitoring** #### How many parameter sets are available? ## Surrogate parameters: Conductivity #### **Estimating parameters: Conductivity** # Criteria resulting from substitution of conductivity for measured ions ## Currently available parameters | Samples for IWQC calculation (2000-2015) | | | | |--|-------|----|--| | (have at least DOC & specific conductance) | | | | | Parameter Sample Sets | 4,722 | % | | | missing pH | 59 | 1% | | | Copper samples to be assessed (2000-2015) | | | | |---|-------|-----|--| | Cu Samples | 4,402 | % | | | missing DOC | 2427 | 58% | | | missing pH | 354 | 8% | | #### Regions with similar water chemistry characteristics ## **DOC** distribution within regions * non-parametric ANOVA on ranks, p < 0.001 *Distribution of DOC is statistically different in each region ## **Preliminary IWQC results** 10th% ## Implementation Concepts: Assessment #### Eg. Fixed Numeric Criteria Requires sufficient data to characterize variability in the pollutant ## Implementation Concepts: Assessment #### Instantaneous Criteria - Requires sufficient data to characterize variability : - in the pollutant - & the protective criteria IWQC — [Cu] ## **Preliminary IWQC results** Copper concentrations exceed instantaneous chronic criteria (CCC) at a rate of ~9% statewide. #### Implementation Concepts: NPDES Permits - 1. Asses reasonable potential to exceed the standard - apply a conservative screening value - paired effluent and ambient parameters - 2. Assign an effluent limit that will ensure copper concentration will not exceed critical instantaneous criteria over time #### Conclusions - Monitoring and Data Management - Availability of parameter data is limiting - monitoring of ambient data - require ambient collection by NPDES permittees - pollutant plus the parameters to evaluate it - Make use of reasonable parameter estimation techniques when necessary - specific conductance as a surrogate for geochemical parameters - conservative estimates of key parameters, i.e. DOC - which defines the protective criterion? #### Conclusions - Policy Implementation - Assess attainment against the biotic ligand model results as the standard - Requires sufficient data to assess the pollutant AND determine the applicable criteria - Establish effluent limits that ensure attainment of standard over time - account not only for variation in pollutant, but also variation in protective criteria - •begin by identifying and protecting the most vulnerable conditions ## Acknowledgements #### Oregon DEQ WQ Monitoring Lab - Aaron Borisenko - Michael Mulvey #### **Oregon DEQ Standards and Assessments** - Debra Sturdevant - Andrea Matzke